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Cavitation of Langmuir monolayers
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Cavitation in liquid expanded and liquid condensed Langmuir monolayers induced by laser heating or
microbubble coalescence is studied experimentally using fluorescence and Brewster angle microscopy. The
kinetics of hole closure of two-dimensional~2D! gaseous cavitation bubbles exhibits a decelerated dynamics
for cavities surrounded by a liquid expanded phase and an accelerated dynamics for cavities in a liquid
condensed phase. Most of the cavities in liquid condensed phases possess a nonconvex shape and do not close.
The results are compared with theoretical predictions derived for 2D cavitation of liquid monolayers of
different surface shear viscosities, and for solid monolayers with diffusive flux of vacancies and interstitials.
While part of the theory is in qualitative agreement with the experiment, the experimentally observed hole
persistence within the liquid condensed phases and the hole closure within liquid expanded phases remains to
be explained. The technique of microbubble coalescence might be particularly useful for the study of the
rheological properties of hexatic phases.
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I. INTRODUCTION

The properties of a material undergo a dramatic chang
the melting transition. In the solid phase, materi
maintain—more or less indefinitely—their shape while a l
uid adopts the shape of its container. In more precise
guage, a solid responds to shear stress by elastic defo
tion, characterized by a shear modulus, while a liq
responds to shear stress by hydrodynamic flow, character
by a shear viscosity.

The difference between these two forms of behavior
illustrated in an appealing manner by the phenomenon
cavitation. Cavities in liquids are generated, for instance,
intense sound waves or by the action of ship propellers.
classical paper@1#, Lord Rayleigh showed that the lifetimet
of a spherical cavity inside a three-dimensional~3D! inviscid
fluid is proportional to the~initial! cavity radiusa: t(a)
50.915a(r/DP)1/2 with r the density of the fluid andDP
the pressure difference between the cavity interior and
exterior surface of the fluid. For very viscous 3D fluids,t is
of order h/DP independent of the cavity radius~h is the
shear viscosity!.

Cavities in solids can be produced, for instance, by bo
bardment with a beam of noble gas atoms. These cav
shrink slowly and eventually disappear but the transp
mechanism is not collective hydrodynamic flow but inste
incoherent radial diffusion of vacancies and/or interstitia
An important distinction between cavities in fluids and
solids is the fact that a hollow cavity in a defect-free sing
crystal is not spherical. If the surface free energy is mi
mized at fixed cavity volume one obtains a convex face
shape for the cavity that reflects the symmetry of the cry
~the cavity shape is obtained by the so-called Wulff plot@2#!.
If the cavity is sufficiently far from thermodynamic equilib
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rium, then concave cavity shapes can be encountered as
Examples are dendrite formation during rapid crystallizat
and fracture patterns produced by the application of a la
local stress on a solid.

These distinctions between the solid and liquid pha
become somewhat more delicate for two-dimensional m
rials. It follows from fundamental statistical-mechanics arg
ments that 2D materials may be in a hexatic phase@3#.
Hexatic materials have properties that in some sense ar
termediate between those of the solid and liquid phas
Hexatics are characterized, for instance, by short-range p
tional order—as is true for liquids—but on the other ha
they do have crystallographic directions with quasi-lon
range order~‘‘bond-orientational’’ order!. In terms of their
response to shear stress, hexatics contain a finite conce
tion of free dislocations so their shear modulus is zero a
they are able to flow. This means that shear flow is permit
so cavities inside hexatics are expected to shrink and di
pear by hydrodynamic flow. However, cavities in ordina
2D isotropic liquids should have a circular shape but if t
Wulff construction is applied to a finite-sized cavity in
hexatic, then a sixfold symmetric shape is obtained, res
bling a hexagon with rounded corners.

There is currently considerable interest in the question
whether or not hexatic phases are present in the phase
gram of 2D Langmuir monolayers~LM’s !. LM’s are mono-
layers of insoluble surfactants residing at the air-water in
face. The pressure-temperature phase diagram of L
exhibits a 2D isotropic gas~G! phase as well as a number o
solid phases. The various liquid phases of LM’s are divid
into the ‘‘liquid expanded’’~LE! and the ‘‘liquid condensed’’
~LC! phases. There is no doubt that the LE phase is jus
isotropic 2D liquid. The nature of the LC phases is, on t
other hand, more controversial. Evidence obtained from
line-shape analysis of grazing incidence x-ray diffracti
@4–6# suggests that some of the LC phases are hexatic
tilted hexatics~in a tilted hexatic there is a preferred in-plan
©2002 The American Physical Society03-1
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direction; for LM’s this direction would be the average pr
jection of the tails of the surfactant molecules in the plane
the air-water interface!. The shape and texture of the LC-L
coexistence domains of these phases, as examined by p
ized fluorescence, support this interpretation. However,
interpretation of the x-ray data has been questioned an
was suggested that these phases in reality might be hi
defected solids@7,8#.

Information concerning the response to shear stress o
putative hexatic LC phases would provide important e
dence that could help to decide the issue. Macroscopic
ology experiments report that these phases indeed are
but with a shear viscosity that is strongly dependent on sh
rate @9#. The interpretation of macroscopic rheology expe
ments is complicated, however, by the fact that it is not e
to distinguish a highly defected solid from a fluid with ‘‘non
Newtonian’’ flow properties. What is necessary are so-ca
microrheological studies carried out at sufficiently sh
length scales so that quenched-in defects cannot mater
affect the results.

It is the aim of this paper to show that microcavitatio
experiments on LM’s are practical and that observations
the formation and collapse of microcavities may provide
useful diagnostic tool for the identification of LM phases.
Sec. II, we first discuss experiments concerning the colla
of micrometer-sized cavities for three different types of s
factant, involving both the LC and LE phases. We then sh
the results of a study of the formation of cavities, produc
by the application of a large but highly localized stress~‘‘ex-
plosive cavitation’’!. In Sec. III we develop a simple theore
ical description of cavitation formation and collapse in LM
Section IV concludes with a comparison between theory
experiment.

II. EXPERIMENT

A. Materials and methods

Experiments on LM cavitation were performed using pe
tadecanoic acid~Sigma Aldrich!, 10,12-pentacosadiynoi
acid ~Wako Pure Chemical Industries Ltd.! and octadecano
~Sigma Aldrich!. The amphiphiles were chosen since eith
their phase diagram is known in detail~pentadecanoic acid
and octadecanol! or their mechanical and rheological pro
erties can be adjusted by photopolymerization~pentac-
osadiyonic acid!. The LM was visualized either by fluores
cence microscopy~FM! or by Brewster angle microscop
~BAM ! using an Ar1 laser in both cases. For the FM, 1%
fluorescence probe 4-hexadecylamino-7-nitrobenz-2-o
1,3-diazole was added to the surfactants. The LM also
exposed to a neodymium-doped yttrium aluminum gar
~Nd/YAG! ir laser with focus on the water-air surface~for
FM, the same objective was used while, a second 203 ob-
jective was added for BAM with the focus arranged so tha
coincided with the field of view of the Brewster angle m
croscope!. The powerP of the ir laser~after the objective!
was adjustable in a range between 50 mW and 4 W. Th
laser locally heats the subphase producing a small hot s
The temperature increaseDT at the center of the hot spot i
proportional to the laser power~DT5aP with a510 K/W!.
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The device has been described in more detail elsewhere@10#.
Pentadecanoic acid and octadecanol~10,12-pentacosadiynoic
acid! were spread from chloroform~benzene! without further
purification. Exposure of the pentacosadiynoic acid mo
layer to uv using a standard mercury lamp polymerizes
monolayer. Experiments were carried out with the monom
as well as with a polymerized monolayer.

B. Cavity collapse in the LC phase

Figure 1 shows BAM images of the LC phase of 10,1
pentacosadiynoic acid monomer atP525 mN/m and T
518 °C subjected to local ir laser heating withP51.01 W.
The circular region in the laser focus has a reduced refl
tivity, approximately comparable with that of the 2DG ~gas!
phase of 10,12-pentacosadiynoic acid.

After turning the laser off att50, the hole closed com
pletely by inward growth of dendrites, developing from th
cavity boundary. After cavity closure, the dendrite structu
disappeared. We performed 210 closure experiments. C
plete closure of the cavities was observed in 63 of the
periments~'30%!. In 147 of the experiments~'70%!, the
cavities did not close completely, with the final radiu
roughly half the initial radius. Figure 2 shows the time d
pendencea(t) of the radius of a number of cavities that d
close completely. The cavity radius is plotted on a log-l
scale as a function oftc2t, with tc the closure time@i.e.,
a(tc)50#. If the data are fitted with a power law

a}~ tc2t !b ~1!

we obtain exponentsb in the range 0.260.1. A distribution
of the exponent is plotted in the inset of Fig. 2. It is obtain
from the evaluation of 30 randomly chosen complete clos
events.

If one polymerizes the pentacosadiynoic acid it is
longer possible to form a hole in the monolayer using la
heating, so that no hole closure events exist for the polym

FIG. 1. Closure of a cavity in the LC phase of 10,1
pentacosadiynoic acid produced by low heating and observed
BAM. After the laser heating switch-off att50, dendritic growths
are observed at the cavity surface. The dendrite structure disapp
after cavity closure~final image!.
3-2
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C. Cavity collapse in the LE phase

For purposes of comparison, we next studied cavity c
lapse in the~isotropic liquid! LE phase. Figure 3 shows suc
cessive FM images of the closure of a cavity in the LE ph
of pentadecanoic acid (A576.5 Å2,T522 °C).

Cavities formed again at the focus of the ir laser~dark
regions in Fig. 3!. The higher heating levels in this cas
produced convective hydrodynamic flow in the subpha
This convection produced at the surface leads to a flow of
LM, roughly along a radial inward direction toward the las
focus. Because the flow was not radially symmetric, the c
ity ~or cavities! were translated and deformed by the flo
producing the ‘‘footprint shape’’ visible in Fig. 3. We pe
formed 18 closure experiments. After the heating w
switched off, the cavities all closed completely. The moti
of the footprint cavity after switch-off, visible in Fig. 3, i

FIG. 2. Cavity closure kinetics of four cavities in the LC pha
of 10,12-pentacosadiynoic acid~with complete closure!. The solid
lines represent power law fits with exponentsb50.1– 0.3. A distri-
bution of exponents from 30 randomly chosen complete clos
events is added in the inset.

FIG. 3. Closure of cavities in the LE phase of pentadecan
acid ~A576.5 Å2, T522 °C). During heating (t,0), hydrody-
namic flow distorted the largest of the bubbles, producing a ‘‘fo
print’’ shape. After switching the ir heating off att50, all cavities
closed completely.
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due to decaying residual hydrodynamic flow.
We plotted the equivalent radius of the footprint cav

defined by

a5AA/p ~2!

as a function of time in Fig. 4~A is the area of the cavity!.
The data were again fitted with a power law~Fig. 4!:

a}tb ~3!

but we now obtain anegative exponentb in the range
20.860.1. Note that this fitting form cannot hold for smallt.
A distribution of exponents from the individual closur
events is plotted in the inset of Fig. 4.

D. Explosive cavitation

A different mode of cavity generation is encountered
increased power levels of the ir laser (P.1 W). In that case,
3D micrometer-sized gas bubbles nucleate in the aque
subphase below the LM due to the decrease of the solub
of gases in water with increasing temperature~see Fig. 5,
first frame!. Because the nucleation of the bubbles tak
place entirely in the subphase, we can assume that the
water surface of the bubbles is free of surfactants~which are
highly insoluble!. The bubbles rose to the surface with
speed of the order of 100mm/s ~consistent with the law of
Hadamard and Rybzinki@11#!. Arrival of the bubbles at the
LM was easily visible by BAM, as shown in Fig. 5~second
frame, bright spot!.

After a residency time at the surface of the order of s
onds, the bubble bursts~Fig. 5, third frame!. The bursting
process must have taken place on submillisecond time sc
as was determined using a fast camera~time resolution 1/240
s!. The bursting event looked surprisingly like anexplosion
on micrometer-level length scales: it was accompanied
the emission of a capillary shock wave. The shock wave
be seen as the region of increased reflectivity in Fig. 5~third
frame; the increased reflectivity is due to the deviation of

re

ic

-

FIG. 4. Cavity closure kinetics in the LE phase of pentadecan
acid. The cavities closed according to a power law, with nega
exponentsb520.860.1. A distribution of exponents from 18 ran
domly chosen closure events is added in the inset.
3-3
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angle between the incident Ar1 laser and the surface from
the Brewster angle as well as between the local plane
incidence and the polarization vector of the laser!. Relax-
ation of the capillary wave again took place on submillise
ond time scales. After the capillary wave had disappea
either a star-shaped or hexagonal hole emerged at the c
of a reorganization zone~Fig. 5, fourth frame!. Unlike the
previous two cases, where cavities were produced by l
intensity heating, the holes persisted for hours without a
evidence of area reduction.

Star-shaped cavities are observed predominantly for
case of small cavities while for larger cavities polygon
shapes most frequently with six facets are encountered
example of the second case is shown in Fig. 6. In Fig. 7

FIG. 5. BAM images of cavity formation by bubble bursting
an octadecanol LM~T525 °C, p'16.5 mN/m!. Heating by the ir
laser caused nucleation in the subphase of a bubble of radiuR
'3 mm at time t522.2 s ~white arrow, first frame!. The bubble
settled below the LM att5240 ms~second frame!. Bubble burst-
ing took place att50 ~third frame!, accompanied by capillary wav
emission. After the rupture event, a star-shaped hole of radiua
'10mm was observed with concave surface sections~fourth
frame!.

FIG. 6. BAM image of a hexagonal cavity in octadecanol~T
525 °C, p'16.5 mN/m! surrounded by a tiltedL2 phase. The cav-
ity was produced by the bursting of a bubble. Gray arrows show
tilt direction of the LM as deduced from the gray scale of the ima
04160
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plot a distribution of the number of arms of the star-shap
holes and the number of edges of the polygonal holes, ta
from 70 holes found in the monolayer.

The LC phase in question (L2) is tilted with a tilt direc-
tion toward the next nearest neighbors. The texture of the
director can be deduced from the BAM image and is sho
in Fig. 6. Note the fact that the molecular tilt performs a 2p
rotation as we traverse the cavity border. The vertices of
hexagonal boundary are the intersection points of the ca
surface with lines in the LM where the tilt direction unde
goes a 60° rotation. Apparently, the micrometer-scale exp
sion has produced avirtual topological defectin the texture
of the tilt director@12#. By a virtual defect we mean that i
we mathematically extend the LM director pattern into t
cavity, then a topological defect is produced, which is
cated inside the cavity.

The cavity interior is substantially darker than the su
rounding area, suggesting that the interior is once again
the G phase. Moreover, surfactant—or insoluble, pho
chemical product—clusters produced by the explosion
visible inside the hole, and they exhibit pronounced Brow
ian motion. This indicates that the surface shear viscosity
the hole interior is low, supporting the conclusion that t
cavity interior is in theG phase.

An interesting variant of the explosive cavitation scena
is shown in Fig. 8 for the case of 10,12-pentacosadiyn
acid: After the gas bubble came in contact with the LM,
produced a star-shaped hole. However, the bubble did
burst in this case, but apparently resealed. The bubble c
be seen to move below the LM. After a time of order 0.1 s
did burst, creating a second cavity. In contrast to the octo
canol case, no shock wave was observed in this case. M
over the star shape eventually relaxed to a convex sh
indicating shorter equilibration times for pentacosadiyn
acid. Nevertheless, as in the octodecanol case, the ca
never closed.

e
.

FIG. 7. Histogram of the shape of the holes created after bub
rupture taken from 70 different rupture events. Larger holes form
polygonal holes are more frequent than star-shaped holes, w
form for smaller areas. Both distributions peak at a sixfold symm
ric shape.
3-4
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FIG. 8. BAM image of the for-
mation of a star-shaped cavity i
10,12-pentacosadiynoic acid~p
525 mN/m, T518 °C!. A gas
bubble ~black arrow! creates a
star-shaped cavity without burst
ing. The bubble continues to mov
below the LM, leaving behind a
path of reduced density~darker!.
The star-shaped hole relaxes fro
a six-armed star~0.08 s! to a five-
armed star~0.24–0.96 s!, and then
toward a convex-shaped cavit
~0.96–5.56 s!.
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III. THEORY

In this section we use a combination of simple thermo
namic and hydrodynamic arguments to come up with a
scription of the formation and collapse of cavities in LM
allowing us to interpret the results obtained in Sec. II. W
start with a discussion of the thermodynamics of cavities
LM’s.

A. Inhomogenous LM’s in mechanical equilibrium

In the experiments discussed in Sec. II, a small, circu
patch of dilute gas phase, is produced inside a surroun
denser LC or LE film by steady-state local heating of the L
with a narrowly focused laser beam. The heat deposited
the beam is dissipated in the aqueous subphase, produc
radial symmetric temperature profileT(r ), with r the radial
distance from the center of the cavity. It follows from th
heat diffusion equation thatT(r )2T(`)}1/r @with T(`) the
temperature far from the heated spot#. The thermodynamic
environment of the LM is thus inhomogeneous. In additio
the LM cannot be in full thermodynamic equilibrium be
cause a heat flux represents a source of entropy produc
However, at sufficiently low heating levels the LM could st
be inmechanical equilibrium. By this we mean that there ar
no unbalanced mechanical forces inside the LM and so th
is no collective 2D mass transport~e.g., 2D hydrodynamic
flow!. Under these ‘‘quasistatic’’ conditions, which of cour
must be verified experimentally, the interior structure of t
cavity can be inferred from the equilibrium phase diagram
follows.

In the absence of externally applied forces, the condit
that there are no unbalanced mechanical forces inside a
is equivalent to stating that its surface tensiong is uniform~a
nonuniform surface tension leads to mass transport!. This
does not mean, however, that the pressureP of the LM is
uniform. The local surface tension of a LM is the differen
of the local temperature-dependent surface tension of p
water gw(T) at the local temperatureT and the local 2D
surface pressureP(T) of the surfactants at that temperatur
as determined by the equation of state of the LM. Fo
uniform surface tension, the quantity

g05gw~T!2P~T! ~4!
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must be constant. The value of the constantg0 is determined
by evaluating Eq.~4! far from the cavity: g0 equals
gw(T0)2P(T0), with gw(T0) the surface tension of water a
the ambient temperatureT0 of the subphase, and withP(T0)
the pressure of the LM at the ambient temperature. Near
cavity, laser heating increases the temperature inversely
portionally to the distancer from the cavity. This reduces th
surface tensiongw(T) of water below the asymptotic valu
gw(T0), approximately proportional toT2T0 . It then fol-
lows from Eq. ~4! that the surface pressure of a local
heated LM is not uniform.

More precisely, if we traverse a path in the LM that sta
inside the cavity and ends at the outer boundary of the L
then we should traverse anisotension linein the P-T phase
diagram. Isotension lines are the loci of points in theP-T
plane with constant surface tensiong ~approximately straight
lines!. In particular, we should traverse that isotension li
which passes through the asymptotic temperature and p
sure. In Fig. 9, we show an isotension line in a schema
phase diagram, with a single phase coexistence line.

We will assume that the temperatureT1 at the center of
the diskr 50 is sufficiently high, so the disk centerr 50 is
in the G phase. The cavity boundary, located atr 5a, is
determined by the condition thatT(a) must be the intersec
tion point of the phase boundaryPce(T) with the isotension
line ~see Fig. 9!. At time t50, the laser beam is switched of
For a sufficiently narrow beam width, thermal diffusion w
very rapidly establish isothermal conditions withT5T0 ev-
erywhere. Inside the dense phase, the equilibrium pres
equalsP(T0) in thermodynamic equilibrium while inside th
cavity the equilibrium pressure equals the coexistence p
sure Pce(T0) at T0 ~see Fig. 9!. The pressure difference
DP5P(T0)2Pce(T0) represents a driving force for th
collapse of the cavity.

B. Cavity collapse

1. Isotropic 2D fluids

During the collapse of the cavity, the work done byDP
must be balanced by viscous losses@13#. For an isotropic and
fluid LM, there are two sources of viscous loss: energy d
sipated by 2D flow of the surfactant molecules~flow velocity
3-5
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vW 2! and energy dissipated by 3D subphase flow~flow veloc-
ity vW 3! entrained by the surface:

P~ t !5
1

2
h2E d2r ~] iv2 j !~] iv2 j !

1
1

2
h3E d3r ~] iv3 j !~] iv3 j ! ~5!

with h2,3 the surface~bulk! viscosities. The surface flow ve
locity can be obtained directly if the LM can be assumed
be incompressible. In that case, mass conservation req
that, for radial symmetry, the flow velocity is inversely pr
portional to r. Demanding that the flow velocity atr 5a
equals the velocityda/dt of the cavity surface gives

v2~r !5
da

dt
~a/r ! ~r .a!. ~6!

Radial surface flow inside the cavity would lead to accum
lation of surfactant material at the cavity centerr 50. Under
steady-state conditions, this is not possible so we must
sume that there is no surface flow inside the cavity:

v2~r !50 ~r ,a!. ~7!

More precisely, it can be shown that surface flow inside
cavity can be neglected for values ofr less thana2d, where
d5h3D/E with D the diffusion constant andE the area
modulus of the gas phase.

In order to obtainvW 3 , we must solve the 3D Navier
Stokes equation in the limit of low Reynolds numbers:

FIG. 9. Cavitation thermodynamics: isotension line is shown
cavitation in a schematicP-T phase diagram with a single phas
coexistence linePce(T). The pressure and temperature far from t
cavity are, respectively,P0 andT0 . If an inhomogeneously heate
LM is in mechanical equilibrium, then the set of allowedP-T val-
ues is the isotension line that passes throughP0 and T0 . At the
center of the cavity, pressure and temperature are, respectivelyP1

andT1 , while T(a) is the temperature at the cavity surface. Aft
laser switch-off, the temperature must equalT0 everywhere.
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h3DvW 352¹W P,

¹W •vW350. ~8!

The boundary conditions for the solution of Eq.~8! are ~i!
that at the LM surface (n50) the normal component ofvW 3
vanishes, and~ii ! that forn50 the in-plane component ofvW 3
must equalvW 2 , as given by Eqs.~6! and~7!. The solution of
Eq. ~8! under the stated boundary conditions was obtained
de Koker and McConnell@14# in a different context:

vn~r ,n!/ȧ52E
0

`

dk aJ0~ka!~kn!J0~kr !e2kn,

v r~r ,n!/ȧ52E
0

`

dk aJ0~ka!~12kn!J1~kr !e2kn ~9!

with J0,1(x) Bessel functions.
We will obtain the rate law for the collapse of the cavi

as follows. Note that there is a mathematical singularity
the flow field at the cavity borderr 5a. During the collapse
of a cavity, the surface tension of the LM~and hence the
pressure! is no longer uniform because of the presence of
and 3D viscous stress applied to the LM. BecauseD'vW 2

50W for the radial flow pattern of Eq.~7!, there is actually no
contribution from the surface viscous force per unit ar
which is equal toh2D'vW 2 . The force per unit area applie
by the viscous stress tensor of the subphase on the LM
must be balanced completely by the gradient of the surf
tension:

¹W'g5h3

]

]n
vW 3~r ,n50!. ~10a!

To obtain the surface tension, Eq.~10a! must be integrated
The integration must be carried out keeping in mind that~i!
the surface tension at infinity equalsg0 , ~ii ! the surface ten-
sion inside the cavity is close to that of water, and~iii ! at the
cavity boundaryr 5a(t) the surface tension must undergo
discontinuous changedg(a) given by

dg~a!522h2ȧ/a. ~10b!

Equation ~10b! is a consequence of the fact that thetotal
surface stress tensor, i.e., the sum of the surface visc
stress and the surface tension, must be continuous acros
interface. Because the surface viscous stress tensor u
goes a discontinuous jump equal tosrr52h2@dv2 /dr(r
5a)# ~assuming the surface viscous stress to be neglig
inside a cavity!, there must be a compensating discontinu
in the surface tension@15#. Integrating Eq.~10a! from r 50
to infinity, we obtain

gw5g01h3E
0

`

dr
]

]n
v r~r ,0!22h2ȧ/a. ~11!

This constitutes a self-consistency condition for the colla
rate of a cavity. The normal derivative of the flow velocity
Eq. ~11!—the shear rate—can be calculated from Eq.~9!:

r
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]

]n
v r~r ,0!5

4

p
ȧa

d

dr S K~a2/r 2!

r D , ~12!

with K(m) the complete elliptical integral of the first kind
Using Eq.~12! in Eq. ~11! leads to a logarithmic divergenc
at r 5a due to the singularity in the flow field. If we use th
length scaled introduced below Eq.~7! as a short-distance
cutoff, we obtain a simple result:

da

dt
>

DPa~ t !

2@h21p21 ln~4a~ t !/d!h3a~ t !#
. ~13!

The precise value of the cutoff is not important because
~13! depends only weakly ond.

(a) Surface viscous regime. Surface viscous losses dom
nate for cavity radiia(t) small compared to the crossov
lengthj5h2 /h3 . Equation~13! then reduces to

da

dt
>2DPa~ t !/2h2 . ~14!

The 2D cavity is thus predicted to shrink at aconstant rate
DP/2h2 , i.e., the radius should decrease exponentially
time:

a~ t !5a0e2~DP/2h2!t. ~15!

The characteristic cavity lifetimet52h2 /DP is indepen-
dent of the initial radius of the cavity. Note that the surfa
viscous regime is just the 2D analog of cavity collapse i
3D viscous fluid.

(b) Bulk viscous regime. For cavity radii large compared
to j5h2 /h3 , viscous dissipation due to subphase flo
dominates, in which case Eq.~13! reduces to

da

dt
}2

DP

ln~4a/d!h3
. ~16!

The cavity now collapses at a nearly constantvelocity
DP/h3 , so the cavity lifetimet(a) should be proportiona
to the initial radius anda(t)}@t(a)2t#. Once the cavity
radius has dropped belowj, collapse should once again tak
place at a constant rate as discussed above.

2. Isotropic 2D solids

The collapse dynamics of cavities in solids is controll
by the transport of vacancies and/or interstitials. We saw
the pressure at the cavity surface is less than that at
exterior boundary by an amountDP that is fixed by thermo-
dynamic considerations.

For every interstitial that diffuses from the exterior su
face to the cavity surface, the free energy of the system
lowered by an amountDPA0 with A0 the area per particle
~the same holds for the inverse process of vacancies
duced at the cavity surface and transported to the exte
surface!. Let the equilibrium area concentrations of inters
tials and vacancies be, respectively,n1 and n2 ~with the
productn1n2 determined by the condition of detailed ba
ance between vacancy and/or interstitial creation and rec
04160
q.

n

a
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bination!. The radial volume current densityJ(r ) moving
outward from the cavity is equal ton1v12n2v2 with v6

the radial drift velocities of interstitials~vacancies!. The
force on an individual vacancy and/or interstitial is equal
the pressure gradient times the volume per particle, so
drift velocities are

vW 656m6A0¹W P ~17!

with m6 the mobility of an interstitial or vacancy. For a 2D
isotropic solid, the pressure profile obeys the Laplace
DP50, so a radial pressure profile can have only a logar
mic dependence on distancer. If L is the system size, then

P~r !52DP
ln~r /L !

ln~a/L !
~18!

up to a constant. The resulting volume current density is

J~r !52
~n1m11n2m2!DP

ln~L/a! S 1

r D . ~19!

Equating the volume currentI 52paJ(a) with the reduction
per unit time of cavity aread/dt (pa2) gives

d~pa2!

dt
522p

~n1m11n2m2!DP

ln~L/a!
. ~20!

Equation~20! leads to the prediction that the cavity radiu
should decrease with time asa(t)}@t(a)2t#1/2, with a cav-
ity lifetime t(a) that is proportional to the square of th
initial radius.

C. Explosive cavitation

In Sec. II, LM microcavities generated at higher laser
tensities were produced in an explosive way by the burs
of bubbles. The physics of thin-film rupture has already be
extensively explored both for soap films@16# and for the
bursting of macroscopic bubbles at the air-water interfa
@17#. Soap film bursts by the very rapid growth of a circul
hole, which is bordered by a toroidal-shaped rim that co
tains part of the material that originally occupied the ho
The rim is preceded by a shock front~called theaureole! and
it travels in a radial outward direction at a constant spe
Culik’s relation @18# predicts that this speed should equal

V5A2g

rh
. ~21!

This relation is obtained by equating the total force exer
by the surface tension 2g on the rim with the rate of chang
of the momentum~h is the film thickness andr is the density
of the fluid!. An important aspect of Eq.~21! is that, accord-
ing to the law of momentum conservation, onlyhalf of the
work done by the surface tension is transformed into kine
energy. The remaining half must be dissipated in some m
ner @19#, such as the production of jets of small drople
Measured speeds of thicker films@16# agree well with Eq.
~21!. For thin films~e.g., a Newton black film with thicknes
3-7
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of 100 nm or less!, the rim exhibits a scalloped shape@20#
and the speed is somewhat less than expected from Eq.~21!.
The Culik velocity is about 10 m/s for a film with thicknes
h5100 nm so a 1mm size hole is formed in only 1027 s.
Somewhat closer to the problem of cavitation by bub
bursting in LM’s is the problem of air bubbles bursting at
air-water surface. A growing rim is again observed in th
case, moving with velocities of order m/s. In addition,
spray of tiny droplets is seen@17# ~connected perhaps to
Rayleigh instability of the rim!. Energy dissipation by burst
ing bubbles is in fact so intense that it may cause cell de
for cells residing at an air-water interface@21#.

Assume a surfactant-free, micrometer-sized, gas-fi
spherical bubble of radiusR touching a LM ~from below!.
The film separating the bubble from the air is asymmet
surfactants only cover the top of the film. Assume also t
the air-water interface is flat~the buoyancy force on the
bubble is too weak to deform the interface! and that the film
thicknessh(0) at the point where the bubble touches the L
is microscopic, i.e., comparable to the size of a surfac
molecule. As a function of the distancer, the thickness pro-
file h(r ) of the water layer is then given by

h~r !>
1

2

r 2

R
. ~22!

At t50 ~the moment the bubble bursts! we introduce a smal
hole atr 50, the thinnest part of the film, in the form of
wormhole that connects the gas bubble interior with the o
side air~see Fig. 10!.

FIG. 10. Wormhole connecting the interior of a gas bubble j
below a LM with the outside air. The hole, with diametera(t), is
surrounded by a rim that travels in the radial outward direct
under the action of the surface tension. The rim contains ex
water and surfactant material that originally occupied the hole.
bubble diameterR(t) diminishes because of air outflow.
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Three processes must start.
~1! The hole is subject to a force per unit length equal

thesumof the tensions of the top and bottom part of the film
This causes the hole to widen, with formation of a rim~see
Fig. 10!.

~2! The boundary line separating surfactant-covered
surfactant-free surface is subject to a force per unit len
equal to thedifferencein surface tensions. This causes t
surfactants to invade the hole.

~3! Gas escapes from the bubble due to gas flow thro
the hole, driven by the Laplace pressure of the bubble in
rior. This causes the bubble radiusR(t) to reduce in time.

We start with the first process. The hole rim is subject
a surface tensiong0 from the LM on the top part of the film
and to the bare surface tension of watergw from the bottom
part of the film. The total force per unit lengthf on the hole
rim equals

f 5~2gw2P!. ~23!

Integrating Eq.~22!, we find for the massM (a) per unit
length of rim

M ~a!>
1

8
r

a3

R
~24!

with a(t) the time-dependent radius of the hole. The mom
tum per unit lengthP(t) stored in the moving rim equal
M (a)(da/dt). Equating dP(t)/dt to the force per unit
length f gives

d

dt S ra3

8R
~da/dt! D5~2gw2P!. ~25!

If the radiusR of the bubble is kept fixed to beR0 , then the
solution of Eq.~25! is @22#

a~ t !5F16R0~2gw2P!

r G1/4

t1/2 ~fixed R!. ~26!

Unlike the case of a bursting soap film, the velocity of t
rim is not constant: the speed drops inversely with the squ
root of time, because the film thickness increases as the
widens.

Once the hole radius is comparable to the bubble thi
nessR, the bubble has effectively fused with the surface. T
bubble/surface fusion timet(R) can thus be estimated by th
condition thata(t) must be of orderR:

t~R!>F r

~2gw2P!G
1/2

R3/2 ~fixed R!. ~27!

For a 10 mm bubble, the fusion time is of the order o
1025 s. This is much less than the cavity relaxation tim
2h2 /DP obtained above, which means that the second p
cess, surfactant invasion, can be neglected for all intents
purposes.
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Just as for the soap film case, only part of the surf
energy can be transformed into rim kinetic energy. The to
work done per unit length of rim by the applied forcef at a
time T,

E
0

T

dt fS da

dt D5 f a~T!52M ~a!S da~T!

dT D 2

, ~28!

equalsfour times the kinetic energy, not just twice as in th
case of flat films. This means that now not 1/2 but 3/4 of
surface energy must be dissipated in the rim. Because
surfactant material that originally occupied the areapa2 on
the top half of the film is restricted to the rim, which has
surface area that is less by a factor (a/R)1/2, we expect that
the surfactant material of the rim is in ‘‘collapsed’’ form
which may absorb part of the excess kinetic energy. An
ternative possibility is the formation of surfactant micelle

We assumed so far that the radius of the bubble was c
stant during the bursting, but the bubble will reduce in s
as it vents gas through the aperture. This process has
carefully examined for bursting vesicles@23#. The velocity
v(a) of the air emerging through a hole is related toR(t) by
mass conservation:

v~a!'2S R

a D 2 dR

dt
. ~29!

Balancing the viscous dissipation by the air flow with t
work done per second by the surface tension of the
bubble gives

dR

dt
}2

gw

ha

a3

R3 ~30!

with ha the viscosity of air. To compute the corrected fusi
time, Eqs.~25! and ~30! must be solved simultaneously:

R~ t !5S R~0!42C1

gw

ha
E

0

t

a3~ t8!dt8D 1/4

~31!

with C1 a numerical factor. If the facto
(gw /ha)*0

t a3(t8)dt8 remains small compared toR(0)4 up to
the fusion point wherea(t) is comparable toR(0), then
bubble deflation plays no role and Eq.~17! remains valid.
The ‘‘fixed R’’ condition is

gw

ha
E

0

t~R!

a3~ t8!dt8,R4. ~32!

Using Eqs.~26! and ~27!, we find that the fixedR regime
holds only for bubbles whose radius obeys the inequality

R,S f

r D S ha

gw
D 2

. ~33!

If the inequality Eq.~33! does not hold, then the bubble mu
at least partially deflate during cavity formation, leading to
reduction of the eventual cavity size. The fusion time is d
termined by equating (gw /ha)*0

t(R)a3(t8)dt8 with R(0)4:
04160
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t~R!}R13/10S ha

gw
D 2/5S r

f D
3/10

. ~34!

IV. CONCLUSIONS

In this section we reexamine the experiments of Sec. I
the light of the theoretical description of cavity initiation an
collapse presented in Sec. III.

A. Cavity collapse in a LC phase

In Sec. II we saw that cavities created by low heating
the LC phase of 10,12-pentacosadiyonic acid withP
525 mN/m andT518 °C collapsed with a characterist
time of the order of seconds, though not all cavities clos
The time-dependent cavity radius could be fitted as a po
law a}(tc2t)b with exponentsb approximately in the range
0.260.1. This form for the time dependence would be qu
inconsistent with Eq.~15! for the collapse of cavities in fluid
LM’s. However, for cavity collapse in the solid phase v
cancy and/or interstitial diffusion the cavity radius shou
decrease asa(t)}(tc2t)1/2, reasonably close to the mea
sured time-dependent radius~although an exponentb51/2
would lie outside the experimental error bar!. The observa-
tion of extensive dendritic growth would seem to provi
support for this interpretation. It is likely that a refinement
the model taking into account the fractal growth using no
radial symmetric solutions of the Laplace equation for t
surface pressure will result in a reduced collapse expon
closer to the experiment. Little is known about the conce
trations of vacancies and/or interstitials in LM’s and the
mobilities, so it is not possible to quantitatively compa
calculated and measured cavity lifetimes.

B. Cavity collapse in a LE phase

In Sec. II, we found that cavities in the LE phase of pe
tadecanoic acid (A576.5 Å2,T522 °C) collapsed in less
than a second. The time dependence of the cavity ra
could be fitted asa}tb with b in the range20.860.1. If the
rheology of the LE phase is that of an isotropic incompre
ible 2D liquid, then Eq.~13! should hold. To apply Eq.~13!,
we first need to estimate the crossover lengthj5h2 /h3 and
compare it with a typical cavity size. Accurate measureme
of h2 in the LE phase do not appear to be available but, if
estimate the surface viscosity@24# by treating the LE phase
as a layer of thickness 30 Å having a typical alkane viscos
of 1–10 P, we obtain a range of 1026– 1027 g/s. The cross-
over length is then of order 1mm or less, so we should
assume the bulk viscous regime@Eq. ~15!# for cavity collapse
in the LE phase.

The prediction is then that the cavity should collapse w
a constant velocityDP/2h3 , which is of the order of
103 cm/s. This is much too fast compared with observ
collapse velocities, which are at most 10mm/s, so we have to
conclude that surfactant transport in the LE phase canno
treated as hydrodynamic flow of a 2D incompressible flu
coupled to a 3D subphase. This should perhaps not be
prising, since the LE phase is indeed quite compress
3-9
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compared to the LC phase. A consequence of this is th
gradient in the area density is expected to develop around
cavity, which would lead to a drop in the effective pressu
difference across the cavity surface and a slowdown of
kinetics at later times. If we ignore coupling to the subpha
and treat transport in the LE phase as that of a dense
solution with a collective diffusion constantDc5m dP/dc
~m is the surfactant mobility andc the surfactant area con
centration!, we obtain a much more reasonable cavity c
lapse timet(a)}(a2/Dc) of the order of seconds~a is of
order 10mm andDc is in the range 1026 cm2/s.! However,
the associated time dependence of the radius, again pro
tional to@t(a)2t#1/2, would not agree with the experimenta
results, so the cavity collapse kinetics of the LE phase
mains to be explained.

It should be noted that for the fluid LC phases surfa
viscosities are much larger. For octadecanol for instance,
of order g/s@25,26# while for eicosanoic acid it is of orde
1022– 1023 g/s @9#. For LC phases in the fluid state~such as
hexatics!, the surface viscous regime would thus be app
priate. The predicted collapse timeDP/2h2 is then in excess
of 10 s, which is in quite reasonable agreement with o
served cavity collapse times in the LC phase, and the
sumption of incompressibility is quite reasonable for L
phases. However, we did not encounter so far in any of
experiments on the LC phase the predicted ‘‘fixed-rate’’ c
lapse kinetics associated with cavity collapse in the surf
viscous regime of Eq.~13!.

C. Explosive cavitation

The last two experiments described in Sec. III concern
explosive cavitation by bubble bursting. For an octadeca
LM in the LC phase (T525 °C,p'16.5 mN/m), bubble
bursting took place at submillisecond time scales and w
accompanied by capillary wave emission. After the rupt
event, either star-shaped holes were observed with con
surface sections~small bubbles! or convex hexagonal hole
~large bubbles! containing a virtual topological defect. In th
latter case, small explosion fragments were observed to
fuse around in the cavity.

The calculated cavity formation time, Eq.~27!, is in the
submillisecond range, which is consistent with our obser
tions. The fact that many small fragments of surfactant m
terial are produced during cavitation is consistent with obs
vation reported by studies of the bursting of macrosco
bubbles, as discussed in Sec. III. It indicates that
surfactant-rich rim broke up during the formation of the ca
ity.

Comparison between theory and experiment, howe
produces a number of discrepancies. It follows from Eq.~23!
that the ratio of the maximum hole diametera(t) and the
initial bubble radius equals
041603
a
e
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e
D
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a~t!

R
'S ha

gw
D 1/5S f

rRD 1/10

. ~35!

For instance, for a bubble with an initial radius of 10mm, the
right hand side is of order 0.1. The maximum size of
surfactant-free area produced by bubble bursting is thus
dicted to be of the order of 0.1 of the bubble radius. For
bursting event shown in Fig. 5, the final cavity actually ha
radius that islarger than that of the bubble. Next, we not
that large bubbles produce convex hexagonal shapes
small bubbles concave star shapes. The obvious interp
tion would be that the kinetics of cavitation must be fas
for smaller bubbles. However, according to Eq.~26! the cav-
ity growth kinetics is actually predicted to be faster for la
bubbles.

The most puzzling observation, however, is the fact
none of the cavities produced by the bubble bursting me
closed. It would seem that this provides evidence that the
phase is solid. However, compare the case of cavitie
10,12-pentacosadiynoic acid atP525 mN/m, T518 °C
produced by lower intensity ir heating, as shown in Fig
with that of Fig. 8, where the cavities were produced
bubble bursting. The same material was used and the
thermodynamic conditions prevailed. Evidently, the str
tural properties of the cavities in the two cases are not
same: structure and lifetime of a LM cavity depend on
method of cavitation. One interpretation is that during exp
sive cavitation the positional and orientational order are
turbed to a high degree. In particular, production of discli
tion pairs may have taken place in that case. The fact
explosive cavitation may produce topological defects is s
ported by the observations on the tilt degree of freedom
Fig. 6. The fact that explosion cavities initially tend to be s
shaped~see Fig. 8! could be interpreted as providing ev
dence for disclination-type defects and/or grain-bound
lines. The presence of such defects could retard the clo
kinetics since the filling in of the cavity might generate
creasing elastic stress. Similarly, filling in the cavity of Fig
must produce an increase in the free energy of the tilt de
of freedom when our virtual topological defect becomes
actual topological defect, with a large elastic distortion in
defect core.
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