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Cavitation of Langmuir monolayers
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Cavitation in liquid expanded and liquid condensed Langmuir monolayers induced by laser heating or
microbubble coalescence is studied experimentally using fluorescence and Brewster angle microscopy. The
kinetics of hole closure of two-dimension@D) gaseous cavitation bubbles exhibits a decelerated dynamics
for cavities surrounded by a liquid expanded phase and an accelerated dynamics for cavities in a liquid
condensed phase. Most of the cavities in liquid condensed phases possess a nonconvex shape and do not close.
The results are compared with theoretical predictions derived for 2D cavitation of liquid monolayers of
different surface shear viscosities, and for solid monolayers with diffusive flux of vacancies and interstitials.
While part of the theory is in qualitative agreement with the experiment, the experimentally observed hole
persistence within the liquid condensed phases and the hole closure within liquid expanded phases remains to
be explained. The technique of microbubble coalescence might be particularly useful for the study of the
rheological properties of hexatic phases.
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[. INTRODUCTION rium, then concave cavity shapes can be encountered as well.
Examples are dendrite formation during rapid crystallization
The properties of a material undergo a dramatic change atnd fracture patterns produced by the application of a large
the melting transition. In the solid phase, materialslocal stress on a solid.
maintain—more or less indefinitely—their shape while a lig- These distinctions between the solid and liquid phases
uid adopts the shape of its container. In more precise lanbecome somewhat more delicate for two-dimensional mate-
guage, a solid responds to shear stress by elastic deformaals. It follows from fundamental statistical-mechanics argu-
tion, characterized by a shear modulus, while a liquidments that 2D materials may be in a hexatic phf3e
responds to shear stress by hydrodynamic flow, characterizegexatic materials have properties that in some sense are in-
by a shear viscosity. termediate between those of the solid and liquid phases.
The difference between these two forms of behavior isHexatics are characterized, for instance, by short-range posi-
illustrated in an appealing manner by the phenomenon ofional order—as is true for liquids—but on the other hand
cavitation Cavities in liquids are generated, for instance, bythey do have crystallographic directions with quasi-long-
intense sound waves or by the action of ship propellers. In gange order(*bond-orientational” orde). In terms of their
classical papefrl], Lord Rayleigh showed that the lifetime  response to shear stress, hexatics contain a finite concentra-
of a spherical cavity inside a three-dimensiof8D) inviscid  tion of free dislocations so their shear modulus is zero and
fluid is proportional to the(initial) cavity radiusa: 7(a) they are able to flow. This means that shear flow is permitted,
=0.915(p/AP)Y2 with p the density of the fluid and P S0 cavities inside hexatics are expected to shrink and disap-
the pressure difference between the cavity interior and theear by hydrodynamic flow. However, cavities in ordinary
exterior surface of the fluid. For very viscous 3D fluidds 2D isotropic liquids should have a circular shape but if the
of order »/AP independent of the cavity radius; is the  Wulff construction is applied to a finite-sized cavity in a
shear viscosity hexatic, then a sixfold symmetric shape is obtained, resem-
Cavities in solids can be produced, for instance, by bombling a hexagon with rounded corners.
bardment with a beam of noble gas atoms. These cavities There is currently considerable interest in the question of
shrink slowly and eventually disappear but the transportvhether or not hexatic phases are present in the phase dia-
mechanism is not collective hydrodynamic flow but insteadgram of 2D Langmuir monolayeféM’s). LM'’s are mono-
incoherent radial diffusion of vacancies and/or interstitials.layers of insoluble surfactants residing at the air-water inter-
An important distinction between cavities in fluids and inface. The pressure-temperature phase diagram of LM'’s
solids is the fact that a hollow cavity in a defect-free singleexhibits a 2D isotropic ga&) phase as well as a number of
crystal is not spherical. If the surface free energy is mini-solid phases. The various liquid phases of LM’s are divided
mized at fixed cavity volume one obtains a convex facetednto the “liquid expanded”(LE) and the “liquid condensed”
shape for the cavity that reflects the symmetry of the crystalLC) phases. There is no doubt that the LE phase is just an
(the cavity shape is obtained by the so-called Wulff pRJ}.  isotropic 2D liquid. The nature of the LC phases is, on the
If the cavity is sufficiently far from thermodynamic equilib- other hand, more controversial. Evidence obtained from the
line-shape analysis of grazing incidence x-ray diffraction
[4—-6] suggests that some of the LC phases are hexatics or
*Email address: thomas.fischer@mpikg-golm.mpg.de tilted hexaticHin a tilted hexatic there is a preferred in-plane
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direction; for LM’s this direction would be the average pro-
jection of the tails of the surfactant molecules in the plane of
the air-water interfade The shape and texture of the LC-LE
coexistence domains of these phases, as examined by poleg#
ized fluorescence, support this interpretation. However, thef
interpretation of the x-ray data has been questioned and i

defected solid$7,8].

Information concerning the response to shear stress of thi
putative hexatic LC phases would provide important evi- A\
dence that could help to decide the issue. Macroscopic rhe
ology experiments report that these phases indeed are flui
but with a shear viscosity that is strongly dependent on shea
rate[9]. The interpretation of macroscopic rheology experi-
ments is complicated, however, by the fact that it is not easy
to distinguish a highly defected solid from a fluid with “non- ~ FIG. 1. Closure of a cavity in the LC phase of 10,12-
Newtonian” flow properties. What is necessary are so-callegpentacosadiynoic acid produced by low heating and observed with
microrheological studies carried out at sufficiently shortBAM. After the laser heating switch-off at=0, dendritic growths
length scales so that quenched-in defects cannot materialpfe observed at the cavity surface. The dendrite structure disappears
affect the results. after cavity closuréfinal image.

It is the aim of this paper to show that microcavitation

experiments on LM’s are practical and that observations orrhe device has been described in more detail elsewhéie

the formation and collapse of microcavities may provide aPentadecanoic acid and octadecati6l,12-pentacosadiynoic
useful diagnostic tool for the identification of LM phases. In acid) were spread from chloroforiibenzengwithout further
Sec. I, we first discuss experiments concerning the collapsgurification. Exposure of the pentacosadiynoic acid mono-
of micrometer-sized cavities for three different types of sur-layer to uv using a standard mercury lamp polymerizes the

factant, involving both the LC and LE phases. We then shownonolayer. Experiments were carried out with the monomer
the results of a study of the formation of cavities, producedas well as with a polymerized monolayer.

by the application of a large but highly localized stré®x-
plosive cavitation). In Sec. Il we develop a simple theoret- B. Cavity collapse in the LC phase
ical description of cavitation formation and collapse in LM’s.

Section IV concludes with a comparison between theory and Figure 1 shows BAM images of the LC phase of 10,12-
experiment. pentacosadiynoic acid monomer Bt=25mN/m andT

=18°C subjected to local ir laser heating wih=1.01 W.

The circular region in the laser focus has a reduced reflec-
tivity, approximately comparable with that of the ZB(ga9g

A. Materials and methods phase of 10,12-pentacosadiynoic acid.

After turning the laser off at=0, the hole closed com-
pletely by inward growth of dendrites, developing from the
cavity boundary. After cavity closure, the dendrite structure
disappeared. We performed 210 closure experiments. Com-
plete closure of the cavities was observed in 63 of the ex-
periments(=~30%). In 147 of the experiment&~70%), the
cavities did not close completely, with the final radius
roughly half the initial radius. Figure 2 shows the time de-

ence microscopyFM) or by Brewster angle microsco pendence(t) of the radius of a number of cavities that did
CBAI(i/I Icros FX(# | : 3{3 th wster E 9 th II:M Slo/pyf close completely. The cavity radius is plotted on a log-log
( ) using an aser in both cases. Forhe Tvl, 17 Of o416 as a function af.—t, with t. the closure timdi.e.,

fluorescence probe 4-hexadecylamino-7-nitrobenz-2-oxaz . \ _ ; :

1,3-diazole was added to the surfactants. The LM also w:g(tC)_o]' If the data are fitted with a power law
exposed to a neodymium-doped yttrium aluminum garnet ac(t,—t)? (1)
(Nd/YAG) ir laser with focus on the water-air surfacer

FM, the same objective was used while, a secons 2b-

jective was added for BAM with the focus arranged so that itwe obtain exponentg in the range 0.2 0.1. A distribution
coincided with the field of view of the Brewster angle mi- of the exponent is plotted in the inset of Fig. 2. It is obtained
croscope The powerP of the ir laser(after the objective  from the evaluation of 30 randomly chosen complete closure
was adjustable in a range between 50 mW and 4 W. The ievents.

laser locally heats the subphase producing a small hot spot. If one polymerizes the pentacosadiynoic acid it is no
The temperature increageT at the center of the hot spot is longer possible to form a hole in the monolayer using laser
proportional to the laser pow¢AT= aP with o= 10 K/W). heating, so that no hole closure events exist for the polymer.

II. EXPERIMENT

Experiments on LM cavitation were performed using pen-
tadecanoic acid(Sigma Aldrich, 10,12-pentacosadiynoic
acid (Wako Pure Chemical Industries Licand octadecanol
(Sigma Aldrich. The amphiphiles were chosen since either,
their phase diagram is known in det§ientadecanoic acid
and octadecanplor their mechanical and rheological prop-
erties can be adjusted by photopolymerizatiqrentac-
osadiyonic acigl The LM was visualized either by fluores-
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FIG. 4. Cavity closure kinetics in the LE phase of pentadecanoic
FIG. 2. Cavity closure kinetics of four cavities in the LC phase acid. The cavities closed according to a power law, with negative
of 10,12-pentacosadiynoic aci@ith complete closure The solid  exponentg3=—0.8+0.1. A distribution of exponents from 18 ran-
lines represent power law fits with exponepts0.1-0.3. Adistri-  domly chosen closure events is added in the inset.
bution of exponents from 30 randomly chosen complete closure
events is added in the inset. due to decaying residual hydrodynamic flow.
We plotted the equivalent radius of the footprint cavity
defined by
For purposes of comparison, we next studied cavity col-
lapse in the(isotropic liquid LE phase. Figure 3 shows suc-

cessive FM images of the closure of a cavity in the LE phase . - : .
of pentadecanoic acidA= 76.5 A2, T=22°C). as a function of time in Fig. 4A is the area of the cavily

Cavities formed again at the focus of the ir lagdark The data were again fitted with a power |&iig. 4):

regions in Fig. 3 The higher heating levels in this case

produced convective hydrodynamic flow in the subphase.
This convection produced at the surface leads to a flow of thgut we now obtain anegative exponent in the range
LM, roughly along a radial inward direction toward the laser —.8+0.1. Note that this fitting form cannot hold for small

focus. Because the flow was not radially symmetric, the cava distribution of exponents from the individual closure
ity (or cavitieg were translated and deformed by the flow, events is plotted in the inset of Fig. 4.

producing the “footprint shape” visible in Fig. 3. We per-
formed 18 closure experiments. After the heating was
switched off, the cavities all closed completely. The motion
of the footprint cavity after switch-off, visible in Fig. 3, is

C. Cavity collapse in the LE phase

a=+AlmT (2

acth 3)

D. Explosive cavitation

A different mode of cavity generation is encountered at
increased power levels of the ir lasé?> 1 W). In that case,
3D micrometer-sized gas bubbles nucleate in the aqueous
4 subphase below the LM due to the decrease of the solubility
—— of gases in water with increasing temperat(see Fig. 5,
first frame. Because the nucleation of the bubbles takes
place entirely in the subphase, we can assume that the air-
water surface of the bubbles is free of surfactdnisich are
highly insolublg. The bubbles rose to the surface with a
speed of the order of 10@m/s (consistent with the law of
Hadamard and RybzinKill]). Arrival of the bubbles at the
LM was easily visible by BAM, as shown in Fig. Second
frame, bright spot

After a residency time at the surface of the order of sec-
onds, the bubble bursigig. 5, third frame. The bursting
process must have taken place on submillisecond time scales,
as was determined using a fast cam@rae resolution 1/240

FIG. 3. Closure of cavities in the LE phase of pentadecanoicd)- The bursting event looked surprisingly like amplosion
acid (A=76.5 A2, T=22°C). During heating t<0), hydrody- On micrometer-level length scales: it was accompanied by
namic flow distorted the largest of the bubbles, producing a “foot-the emission of a capillary shock wave. The shock wave can
print” shape. After switching the ir heating off a= 0, all cavites ~ be seen as the region of increased reflectivity in Fighsd
closed completely. frame; the increased reflectivity is due to the deviation of the

-~

t=0.16s
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plot a distribution of the number of arms of the star-shaped
holes and the number of edges of the polygonal holes, taken
from 70 holes found in the monolayer.

The LC phase in questiorLg) is tilted with a tilt direc-
tion toward the next nearest neighbors. The texture of the tilt
director can be deduced from the BAM image and is shown
in Fig. 6. Note the fact that the molecular tilt performsa 2
rotation as we traverse the cavity border. The vertices of the
hexagonal boundary are the intersection points of the cavity
surface with lines in the LM where the tilt direction under-
goes a 60° rotation. Apparently, the micrometer-scale explo-
sion has produced wrtual topological defecin the texture
of the tilt director[12]. By a virtual defect we mean that if
we mathematically extend the LM director pattern into the
_ _ _ ~_ cavity, then a topological defect is produced, which is lo-

FIG. 5. BAM images of cavity formation by bub_ble burstlng in cated inside the cavity.
an octadecanol LMT=25°C, w~16.5 mN/m. Heating by the ir The cavity interior is substantially darker than the sur-
laser caused nucleation in the subphase of a bubble of r&lius o hqing area, suggesting that the interior is once again in
~3um at timet=—2.2 s (white arrow, first framg The bubble " phase. Moreover, surfactant—or insoluble, photo-
settled below the LM at= —40 ms(second frame Bubble burst- . :
ing took place at=0 (third frame, accompanied by capillary wave chgmlcgl .prOdUCt_CIUSterS prOduce.d. by the explosion are
emission. After the rupture event, a star-shaped hole of raalius Y'S'ble |_nS|de the.ho_le, and they exhibit pronounce.d quwn—
~10um was observed with concave surface sectigfuirth ian motlop. Thls |_nd|cates that the surface shear viscosity of
frame. the hole interior is low, supporting the conclusion that the

cavity interior is in theG phase.

o An interesting variant of the explosive cavitation scenario
angle between the incident Arlaser and the surface from is shown in Fig. 8 for the case of 10,12-pentacosadiynoic

the Brewster angle as well as between the local plane ofcig: After the gas bubble came in contact with the LM, it
incidence and the polarization vector of the lasételax-  yroquced a star-shaped hole. However, the bubble did not
ation of the capillary wave again took place on submillisec-jy st in this case, but apparently resealed. The bubble could
ond time scales. After the capillary wave had disappearedye seen to move below the LM. After a time of order 0.1 s, it
either a star-shaped or hexagonal hole emerged at the cenigh pyrst, creating a second cavity. In contrast to the octode-
of a reorganization zon¢Fig. 5, fourth framg. Unlike the  cano| case, no shock wave was observed in this case. More-
previous two cases, where cavities were produced by 10Wgyer the star shape eventually relaxed to a convex shape
intensity heating, the holes persisted for hours without any,gicating shorter equilibration times for pentacosadiynoic

evidence of area reduction. _ acid. Nevertheless, as in the octodecanol case, the cavity
Star-shaped cavities are observed predominantly for thgeyer closed.

case of small cavities while for larger cavities polygonal
shapes most frequently with six facets are encountered. An
example of the second case is shown in Fig. 6. In Fig. 7 we ] sta'r

304 I polygon .

frequency

number of edges or arms

FIG. 7. Histogram of the shape of the holes created after bubble
FIG. 6. BAM image of a hexagonal cavity in octadecafibl  rupture taken from 70 different rupture events. Larger holes forming
=25°C, m=~16.5 mN/m surrounded by a tiltedl, phase. The cav- polygonal holes are more frequent than star-shaped holes, which
ity was produced by the bursting of a bubble. Gray arrows show théorm for smaller areas. Both distributions peak at a sixfold symmet-
tilt direction of the LM as deduced from the gray scale of the imageric shape.
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FIG. 8. BAM image of the for-
mation of a star-shaped cavity in
10,12-pentacosadiynoic acidm=
=25mN/m, T=18°0C. A gas
bubble (black arrow creates a
star-shaped cavity without burst-
ing. The bubble continues to move
below the LM, leaving behind a
path of reduced densitydarkey.
The star-shaped hole relaxes from
a six-armed staf0.08 9 to a five-
armed staf0.24—0.96 § and then
toward a convex-shaped cavity
(0.96-5.56 &

lll. THEORY must be constant. The value of the constgnts determined

In this section we use a combination of simple thermody-by evaluating Eq.(4) far from the cavity: y, equals

namic and hydrodynamic arguments to come up with a deYw(To) ~1I(To), with ¥,(T) the surface tension of water at

scription of the formation and collapse of cavities in LM's (h€ @mbient temperatufi, of the subphase, and will(To)

allowing us to interpret the results obtained in Sec. II. well€ Pressure of the LM at the ambient temperature. Near the

start with a discussion of the thermodynamics of cavities irc@VIy: laser heating increases the temperature inversely pro-
LM’s. portionally to the distancefrom the cavity. This reduces the

surface tensiony, (T) of water below the asymptotic value
_ _ o vw(To), approximately proportional td —T,. It then fol-
A. Inhomogenous LM’s in mechanical equilibrium lows from Eq.(4) that the surface pressure of a locally

In the experiments discussed in Sec. I, a small, circulaf€ated LM is not uniform. _
patch of dilute gas phase, is produced inside a surrounding More precisely, if we traverse a path in the LM that starts
denser LC or LE film by steady-state local heating of the LMiNnside the cavity and ends at the outer boundary of the LM,
with a narrowly focused laser beam. The heat deposited bijien we should traverse asotension linein the I1-T phase
the beam is dissipated in the aqueous subphase, producingl@gram. Isotension lines are the loci of points in el
radial symmetric temperature profilgr), with r the radial plane with constant surface tensigriapproximately straight
distance from the center of the cavity. It follows from the lines). In particular, we should traverse that isotension line
heat diffusion equation that(r) — T () e 1/r [with T() the which passes through the asymptotip temperature and pres-
temperature far from the heated spdfhe thermodynamic Sure. In Fig. 9, we show an isotension line in a schematic
environment of the LM is thus inhomogeneous. In addition,Phase diagram, with a single phase coexistence line.
the LM cannot be in full thermodynamic equilibrium be- ~ We will assume that the temperatufe at the center of
cause a heat flux represents a source of entropy productiofe diskr=0 is sufficiently high, so the disk center=0 is
However, at sufficiently low heating levels the LM could still in the G phase. The cavity boundary, locatedrata, is
be inmechanical equilibriumBy this we mean that there are determined by the condition tha(a) must be the intersec-
no unbalanced mechanical forces inside the LM and so theréon point of the phase boundaty.{(T) with the isotension
is no collective 2D mass transpai.g., 2D hydrodynamic line (see Fig. 9. Attime t=0, the laser beam is switched off.
flow). Under these “quasistatic” conditions, which of course For a sufficiently narrow beam width, thermal diffusion will
must be verified experimentally, the interior structure of thevery rapidly establish isothermal conditions witk=T, ev-
cavity can be inferred from the equilibrium phase diagram agrywhere. Inside the dense phase, the equilibrium pressure
follows. equalslI(Tg) in thermodynamic equilibrium while inside the

In the absence of externally applied forces, the conditiorfavity the equilibrium pressure equals the coexistence pres-
that there are no unbalanced mechanical forces inside a LMure I1 (To) at To (see Fig. 9. The pressure difference
is equivalent to stating that its surface tensiois uniform(a  AII=II(T,)—Il.{To) represents a driving force for the
nonuniform surface tension leads to mass trangpditis  collapse of the cavity.
does not mean, however, that the presddref the LM is
uniform. The local surface tension of a LM is the difference
of the local temperature-dependent surface tension of pure B. Cavity collapse
water y,,(T) at the local temperatur@ and the local 2D
surface pressurH(T) of the surfactants at that temperature, ) )
as determined by the equation of state of the LM. For a During the collapse of the cavity, the work done AYI

1. Isotropic 2D fluids

uniform surface tension, the quantity must be balanced by viscous los§&3]. For an isotropic and
fluid LM, there are two sources of viscous loss: energy dis-
Yo=yuw(T)—1I(T) (4)  sipated by 2D flow of the surfactant molecul@sw velocity
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I A ﬂ3A63:_€P,

V-5,=0. (8)

The boundary conditions for the solution of E®) are (i)

that at the LM surfacen(=0) the normal component a@f;
vanishes, andi) that forn=0 the in-plane component 0%
LC/LE must equab,, as given by Eqs6) and(7). The solution of

I G Eq. (8) under the stated boundary conditions was obtained by
de Koker and McConne(l14] in a different context:

Tee(T)

isotension line .
I un(r,n)/a=—f dk aJ(ka)(kn)Jo(kr)e k",
0

Meo(To)| - o

> vr(r,n)/az—f:dk ak(ka)(1—kn)Jy(kr)e k" (9)

FIG. 9. Cavitation thermodynamics: isotension line is shown forwith Jg 1(x) Bessel functions.
cavitation in a schematifl-T phase diagram with a single phase ~ We will obtain the rate law for the collapse of the cavity
coexistence lindI.((T). The pressure and temperature far from theas follows. Note that there is a mathematical singularity in
cavity are, respectivelftl, andT. If an inhomogeneously heated the flow field at the cavity border=a. During the collapse
LM is in mechanical equilibrium, then the set of allowHdT val- of a cavity, the surface tension of the Lkand hence the
ues is the isotension line that passes throlilghand To. At the  pressurgis no longer uniform because of the presence of 2D
center of the cavity, pressure and temperature are, respecligly, and 3D viscous stress applied to the LM. Becawse’,

and T, yvhlle T(a) is the temperature at the cavity surface. After — 6 for the radial flow pattern of Eq7), there is actually no
laser switch-off, the temperature must eqigleverywhere. o . :

contribution from the surface viscous force per unit area,
which is equal ton,A, v,. The force per unit area applied
by the viscous stress tensor of the subphase on the LM thus
must be balanced completely by the gradient of the surface
tension:

v,) and energy dissipated by 3D subphase f(flaw veloc-
ity v3) entrained by the surface:

1
P(t):§U2J d?r (Giv2))(div2)) p
Vi y=173;-03(r.n=0). (103

1
+§7l3j d°r (dv3))(dvg)) 5 . _ .
To obtain the surface tension, E{.09 must be integrated.

. . . The integration must be carried out keeping in mind flgt
}N'th 72,3 thbe suk:fapdl?jul(;g) V|s|co_?|t|hes.L'I|;/P|1e surgace flow vg- the surface tension at infinity equayg, (i) the surface ten-
ocity can be obtained directly It the can be assumed 10, inside the cavity is close to that of water, diid at the

be incompressible. In that case, mass conservation requ"%ﬁvity boundaryr =a(t) the surface tension must undergo a

that, for radial symmetry, the flow velocity is inversely pro- discontinuous changéy(a) given by
portional tor. Demanding that the flow velocity at=a

equals the velocitgla/dt of the cavity surface gives Sy(a)=—2n,ala. (10b)
B da Equation(10b) is a consequence of the fact that ttweal
vz(r)—a(a/r) (r>a). (6) surface stress tensor, i.e., the sum of the surface viscous

stress and the surface tension, must be continuous across any
Radial surface flow inside the cavity would lead to accumudnterface. Because the surface viscous stress tensor under-
lation of surfactant material at the cavity center0. Under ~goes a discontinuous jump equal tg,,=2»,[dv,/dr(r
steady-state conditions, this is not possible so we must as=a)] (assuming the surface viscous stress to be negligible

sume that there is no surface flow inside the cavity: inside a cavity, there must be a compensating discontinuity

in the surface tensiofil5]. Integrating Eq.(103 from r=0
vo(r)=0 (r<a). (7)  toinfinity, we obtain

More precisely, it can be shown that surface flow inside the _ 0 .

cavity can be neglected for valuesraess thara— &, where Yw= Yot 73 fo dr a—nv,(r 0)=2n,8/a, (D

6= n3D/E with D the diffusion constant ané& the area

modulus of the gas phase. This constitutes a self-consistency condition for the collapse

In order to obtainv;, we must solve the 3D Navier- rate of a cavity. The normal derivative of the flow velocity in
Stokes equation in the limit of low Reynolds numbers: Eq. (11)—the shear rate—can be calculated from E:
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d o_4_ d
a—nvr(r, )= —aa—

—aag (120 outward from the cavity is equal 0 v —n"v~ with v™*

the radial drift velocities of interstitial§vacancies The
with K(m) the complete elliptical integral of the first kind. force on an individual vacancy and/or interstitial is equal to
Using Eq.(12) in Eq. (11) leads to a logarithmic divergence the pressure gradient times the volume per particle, so the
atr=a due to the singularity in the flow field. If we use the drift velocities are

length scales introduced below Eq(7) as a short-distance - . =

cutoff, we obtain a simple result: vT=%uAgVII 17)

K(az/rZ)) bination. The radial volume current density(r) moving
— |

da ATla(t) with «= the mobility of an interstitial or vacancy. For a 2D
o7 = = . (13 isotropic solid, the pressure profile obeys the Laplace law
dt 2[7+m "In(4a(t)/) nsa(t)] ATI=0, so a radial pressure profile can have only a logarith-

The precise value of the cutoff is not important because EqMC dependence on distancelf L is the system size, then
(13) depends only weakly o#. In(r/L)

(a) Surface viscous regim&urface viscous losses domi- [(r)=—AIl
nate for cavity radiia(t) small compared to the crossover In(a/L)
length é= 7,/ 75. Equation(13) then reduces to

(18

up to a constant. The resulting volume current density is

d o -
—aZ—AHa(t)IZnZ. (14) (NN )AH(E) 19

dt ()= In(L/a) r

The 2D cavity is thus _predlcted to shrink atanstant rate Equating the volume curreit= 2waJ(a) with the reduction
All/27,, i.e., the radius should decrease exponentially in L . PN
time: per unit time of cavity ared/dt (7a“) gives

a(t)=age (A2t (15) d(ma?) _ 77_(rfr,tLJ’wLn_,u_)Al'[
dt In(L/a)

(20

The characteristic cavity lifetime=2,/All is indepen- ) o . )
dent of the initial radius of the cavity. Note that the surfaceEduation(20) leads to the prediction that the cavity radius

viscous regime is just the 2D analog of cavity collapse in aShould decrease with time agt) [ 7(a) —t]*? with a cav-

3D viscous fluid. ity lifetime 7(a) that is proportional to the square of the
(b) Bulk viscous regimeFor cavity radii large compared initial radius.

to é=m,/m3, viscous dissipation due to subphase flow

dominates, in which case E(L3) reduces to C. Explosive cavitation
In Sec. Il, LM microcavities generated at higher laser in-
da ATl " . . .
R — (16) tensities were produced in an explosive way by the bursting
dt  In(4a/6) 73 of bubbles. The physics of thin-film rupture has already been

extensively explored both for soap filni46] and for the
R . bursting of macroscopic bubbles at the air-water interface
Al'[/oyg_, SO the cavity lifetimer(a) should be proportlonal [17]. Soap film bursts by the very rapid growth of a circular
to the initial radius anda(t)«<[7(a)—t]. Once the cavity pje \which is bordered by a toroidal-shaped rim that con-
radius has dropped belog collapse should once again take (ying part of the material that originally occupied the hole.
place at a constant rate as discussed above. The rim is preceded by a shock frafeglled theaureold and

it travels in a radial outward direction at a constant speed.
Culik’s relation[18] predicts that this speed should equal

The cavity now collapses at a nearly constamtocity

2. Isotropic 2D solids

The collapse dynamics of cavities in solids is controlled
by the transport of vacancies and/or interstitials. We saw that 2y

the pressure at the cavity surface is less than that at the V= p_h (2D
exterior boundary by an amountiI that is fixed by thermo-
dynamic considerations. This relation is obtained by equating the total force exerted

For every interstitial that diffuses from the exterior sur- by the surface tensiom?on the rim with the rate of change
face to the cavity surface, the free energy of the system isf the momentunth is the film thickness angd is the density
lowered by an amoumAIIA, with A, the area per particle of the fluid. An important aspect of Eq21) is that, accord-
(the same holds for the inverse process of vacancies prang to the law of momentum conservation, origlf of the
duced at the cavity surface and transported to the exteriowork done by the surface tension is transformed into kinetic
surface. Let the equilibrium area concentrations of intersti- energy. The remaining half must be dissipated in some man-
tials and vacancies be, respectivety, andn~ (with the  ner[19], such as the production of jets of small droplets.
productn™n~ determined by the condition of detailed bal- Measured speeds of thicker filnj6] agree well with Eq.
ance between vacancy and/or interstitial creation and recont21). For thin films(e.g., a Newton black film with thickness
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air flow Three processes must start.
A (1) The hole is subject to a force per unit length equal to
! thesumof the tensions of the top and bottom part of the film.
Q This causes the hole to widen, with formation of a risee
Fig. 10.

I

| (2) The boundary line separating surfactant-covered and
\ = ; . i

| surfactant-free surface is subject to a force per unit length

excess surfactant . N . '
equal to thedifferencein surface tensions. This causes the
surfactants to invade the hole.
(3) Gas escapes from the bubble due to gas flow through

: rim the hole, driven by the Laplace pressure of the bubble inte-
I rior. This causes the bubble radiRét) to reduce in time.
| We start with the first process. The hole rim is subject to
{ a surface tensiory, from the LM on the top part of the film
\ i and to the bare surface tension of wajgrfrom the bottom
|
|
|
1
I
I
!
|
|

~
\ a(t)

part of the film. The total force per unit lengtfon the hole
rim equals

f=(2y,~1D). (23
\ Integrating Eq.(22), we find for the masdM(a) per unit
length of rim
FIG. 10. Wormhole connecting the interior of a gas bubble just
below a LM with the outside air. The hole, with diamett), is
surrounded by a rim that travels in the radial outward direction M(a)=

under the action of the surface tension. The rim contains excess

water and surfactant material that originally occupied the hole. The ] ]
bubble diameteR(t) diminishes because of air outflow. with a(t) the time-dependent radius of the hole. The momen-

tum per unit lengthP(t) stored in the moving rim equals

of 100 nm or less the rim exhibits a scalloped shap20]  M(a)(da/dt). Equating dP(t)/dt to the force per unit
and the speed is somewnhat less than expected fronefy.  lengthf gives
The Culik velocity is about 10 m/s for a film with t%kness g .
h=100 nm so a lum size hole is formed in only S. pa
Somewhat closer to the problem of cavitation by bubble 3(8—R(da/dt)) =(2yy—1D). (25)
bursting in LM’s is the problem of air bubbles bursting at an
air-water surface. A growing rim is again observed in this|¢ the radiusR of the bubble is kept fixed to by, then the
case, moving with Ve!OCItIES of order m/s. In addition, aggjution of Eq.(25) is [22]
spray of tiny droplets is se€fl7] (connected perhaps to a
Rayleigh instability of the rim Energy dissipation by burst-
ing bubbles is in fact so intense that it may cause cell death a(t)=
for cells residing at an air-water interfaf21].

Assume a surfactant-free, micrometer-sized, gas-filled
spherical bubble of radiuR touching a LM (from below). Unlike the case of a bursting soap film, the velocity of the
The film separating the bubble from the air is asymmetric:im is notconstant: the speed drops inversely with the square
surfactants only cover the top of the film. Assume also thafoot of time, because the film thickness increases as the hole
the air-water interface is flatthe buoyancy force on the Wwidens.
bubble is too weak to deform the interfa@nd that the film Once the hole radius is comparable to the bubble thick-
thicknesd'](o) at the point where the bubble touches the LM neSSR, the bubble haS eﬁ:eC“Vely fused W|th the surface. The
is microscopic, i.e., comparable to the size of a surfactanPubble/surface fusion time(R) can thus be estimated by the
molecule. As a function of the distancethe thickness pro-  condition thata(r) must be of ordeR:
file h(r) of the water layer is then given by

2 7(R)=

1r
h(r)Ezﬁ (22

a3
PR (24)

Q| =

16Ry(27y,,—IT)]¥4
M} 2 (fixed R).  (26)

1/2

P R¥2 (fixed R).  (27)

(2yw—1I)

For a 10 um bubble, the fusion time is of the order of
At t=0 (the moment the bubble burstse introduce a small 10 ° s. This is much less than the cavity relaxation time
hole atr =0, the thinnest part of the film, in the form of a 27,/AIl obtained above, which means that the second pro-
wormhole that connects the gas bubble interior with the outeess, surfactant invasion, can be neglected for all intents and
side air(see Fig. 10 purposes.
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Just as for the soap film case, only part of the surface 7a\ 2% p\ 310

. . . . 13/1q /@ =
energy can be transformed into rim kinetic energy. The total T(R)*R U(y ) ( f) : (34
work done per unit length of rim by the applied fortat a W
time T,

2 IV. CONCLUSIONS
T da da(T)
fo dtfl r/=fa(M=2M@)| —7] . (29 In this section we reexamine the experiments of Sec. Il in

the light of the theoretical description of cavity initiation and

equalsfour times the kinetic energy, not just twice as in the collapse presented in Sec. III.

case of flat films. This means that now not 1/2 but 3/4 of the

surface energy must be dissipated in the rim. Because the A. Cavity collapse in a LC phase
surfactant material that originally occupied the area on
the top half of the film is restricted to the rim, which has a
surface area that is less by a facta/R)? we expect that
the surfactant material of the rim is in “collapsed” form,

In Sec. Il we saw that cavities created by low heating in
the LC phase of 10,12-pentacosadiyonic acid with
=25mN/m andT=18°C collapsed with a characteristic
time of the order of seconds, though not all cavities closed.

which may absorb part of the excess kinetic energy. An al : : . .
ternative possibility is the formation of surfactant micelles. The tlme-depBenQent cavity radius cou!d be f|tt.ed as a power
aw ax (t.—t)” with exponentg3 approximately in the range

We assumed so far that the radius of the bubble was cori) 2401 This for the time d d idb i
stant during the bursting, but the bubble will reduce in size” <~~~ Is form for the time dependence would be quite
onsistent with Eq(15) for the collapse of cavities in fluid

as it vents gas through the aperture. This process has be . ; X
g g : b 's. However, for cavity collapse in the solid phase va-

carefully examined for bursting vesicl¢23]. The velocity ) " g . .
- - ; cancy and/or interstitial diffusion the cavity radius should
v(a) of the air emerging through a hole is relatedR{t) by decrease aa(t)e(t,—1)"2 reasonably close to the mea-

mass conservation: sured time-dependent radigalthough an exponeng=1/2

R\2dR would lie outside the experimental error hafhe observa-

al dt- (290  tion of extensive dendritic growth would seem to provide
support for this interpretation. It is likely that a refinement of

Balancing the viscous dissipation by the air flow with the € model taking into account the fractal growth using non-
work done per second by the surface tension of the gagadlal symmetric solutions of the Laplace equation for the

v(a)=~—

bubble gives surface pressure will result in a reduced collapse exponent
closer to the experiment. Little is known about the concen-

dR Y & trations of vacancies and/or interstitials in LM’s and their

a“—n—ag (30 mobilities, so it is not possible to quantitatively compare

calculated and measured cavity lifetimes.

with 7, the viscosity of air. To compute the corrected fusion _ _
time, Egs.(25) and(30) must be solved simultaneously: B. Cavity collapse in a LE phase

. Y4 In Sec. I, we found that cavities in the LE phase of pen-
R(t)=<R(0)4—Clﬂ a3(t’)dt’> 31 tadecanoic acid A=76.5A?T=22°C) collapsed in less
Ma Jo than a second. The time dependence of the cavity radius
could be fitted agt? with 8 in the range—0.8+0.1. If the
with C; a numerical factor. If the factor rheology of the LE phase is that of an isotropic incompress-
(yw!m2) J5a%(t’)dt’ remains small compared R(0)* upto  ible 2D liquid, then Eq(13) should hold. To apply Eq13),
the fusion point wherea(t) is comparable taR(0), then  we first need to estimate the crossover lengthy, / 73 and
bubble deflation plays no role and E@.7) remains valid. compare it with a typical cavity size. Accurate measurements
The “fixed R” condition is of 5, in the LE phase do not appear to be available but, if we
estimate the surface viscositg4] by treating the LE phase
Yw T(R)a:*’(t’)dt’ <Rt (32 asa layer of thickness 30 A having a typical alkane viscosity
MaJo ' of 1-10 P, we obtain a range of 19-10 7 g/s. The cross-

a

2
(33

over length is then of order km or less, so we should
Using Eqgs.(26) and (27), we find that the fixedR regime  assume the bulk viscous regirfteq. (15)] for cavity collapse
holds only for bubbles whose radius obeys the inequality in the LE phase.
The prediction is then that the cavity should collapse with
R<(i)(ﬁ a constant velocityAIl/27%5, which is of the order of
P\ Yw 10° cm/s. This is much too fast compared with observed
collapse velocities, which are at most Afh/s, so we have to
If the inequality Eq(33) does not hold, then the bubble must conclude that surfactant transport in the LE phase cannot be
at least partially deflate during cavity formation, leading to atreated as hydrodynamic flow of a 2D incompressible fluid
reduction of the eventual cavity size. The fusion time is decoupled to a 3D subphase. This should perhaps not be sur-
termined by equating;(wlna)fg(R)a3(t’)dt’ with R(0)*: prising, since the LE phase is indeed quite compressible
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compared to the LC phase. A consequence of this is that a a(7) ( ﬂa) s
~ (35

gradient in the area density is expected to develop around the R
cavity, which would lead to a drop in the effective pressure
difference across the cavity surface and a slowdown of th . . - .
kinetics at later times. If we ignore coupling to the subphas _orr]tlnﬁtar:jce,_;or.a bl;bbls W'tg 1an_||_rr1]|t|al raqlus of A, th? th
and treat transport in the LE phase as that of a dense 2B9 and side 1S of order U.1. The maximum size of he
solution with a collective diffusion constamt,= x dIl/dc sprfactant—free area produced by bubble burstlng is thus pre-
(u is the surfactant mobility and the surfactant area con- d'Cted to be of the ord.er qf 0.1 of th.e bubb[e radius. For the
centration, we obtain a much more reasonable cavity col-bur.Stlng event shown in Fig. 5, the final cavity actually has a
lapse timér(a)oc(aZ/D ) of the order of secondéa is of radius that idarger than that of the bubble. Next, we noted
C

order 10um andD, is in the range 10° ci?/s.) However that large bubbles produce convex hexagonal shapes and
c : ’ §J_11all bubbles concave star shapes. The obvious interpreta-

the associated time dependence of the radius, again prOpcflon would be that the kinetics of cavitation must be faster

tional to[ 7(a) —t]*2, would not agree with the experimental ;

results, so the cavity collapse kinetics of the LE phase re?for smaller t_)ubi_JIes_. However, acc_ordlng to E26) the cav-

mains to be explained. gyé;k;?wth kinetics is actually predicted to be faster for large
ubbles.

It should be noted that for the fluid LC phases surface The most puzzling observation, however, is the fact that
viscosities are much larger. For octadecanol for instance, it is P 9 ' '

. : . o none of the cavities produced by the bubble bursting method
ig?zrgirogéséi)[g? I\évohr'lf éoghgggss?:?#; ?ﬁ% Ist,t;e%fcﬁrgsr closed. It would seem that this provides evidence that the LC

hexatics, the surface viscous regime would thus be appro_phase is solid. However, compare the case of cavities in

priate. The predicted collapse tindd1/27, is then in excess 10,12—pentacosad|y_r10|c "?‘C'O.' EH[:.ZS mN/m, T= .18 C
of 10 s, which is in quite reasonable agreement with Ob_produced by lower intensity ir heating, as shown in Fig. 1,

: : : with that of Fig. 8, where the cavities were produced by
served cavity collapse times in the LC phase, and the 3Bubble bursting. The same material was used and the same

sumption of incompressibility is quite reasonable for I‘Cthermodynamic conditions prevailed. Evidently, the struc-

phases. However, we did not encounter so far in any of ou . e
. . o " ural properties of the cavities in the two cases are not the
experiments on the LC phase the predicted “fixed-rate” col- i e .
same: structure and lifetime of a LM cavity depend on the

lapse kinetics associated with cavity collapse in the surfacé o : .o .
viscous regime of Eq(13). method of cavitation. One interpretation is that during explo

sive cavitation the positional and orientational order are per-
turbed to a high degree. In particular, production of disclina-
tion pairs may have taken place in that case. The fact that
The last two experiments described in Sec. Il concernedXxplosive cavitation may produce topological defects is sup-
explosive cavitation by bubble bursting. For an octadecangported by the observations on the tilt degree of freedom in
LM in the LC phase T=25°C,m~16.5 mN/m), bubble Fig. 6. The fact that explosion cavities initially tend to be star
bursting took place at submillisecond time scales and washaped(see Fig. 8 could be interpreted as providing evi-
accompanied by capillary wave emission. After the rupturedence for disclination-type defects and/or grain-boundary
event, either star-shaped holes were observed with concaliges. The presence of such defects could retard the closure
surface sectiongsmall bubbles or convex hexagonal holes Kinetics since the filling in of the cavity might generate in-
(large bubblescontaining a virtual topological defect. In the creasing elastic stress. Similarly, filling in the cavity of Fig. 6
latter case, small explosion fragments were observed to difnust produce an increase in the free energy of the tilt degree
fuse around in the cavity. of freedom when our virtual topological defect becomes an
The calculated cavity formation time, ER7), is in the  actual topological defect, with a large elastic distortion in the
submillisecond range, which is consistent with our observadefect core.
tions. The fact that many small fragments of surfactant ma-
terial are produced during cavitation is consistent with obser-
vation reported by studies of the bursting of macroscopic
bubbles, as discussed in Sec. lll. It indicates that the We would like to thank H. Mbwald for generous support
surfactant-rich rim broke up during the formation of the cav-and stimulating discussions, C. Knobler for reading the
ity. manuscript, and F. Brochard and S. Putterman for discus-
Comparison between theory and experiment, howeveisions on, respectively, the bursting of bubbles and cavitation.
produces a number of discrepancies. It follows from@8)  This work was supported by the Deutsche Forschungsge-
that the ratio of the maximum hole diametfr) and the meinschaft (DFG) through Grant Nos. Fi 548/2-1 and
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